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ABSTRACT

For a binary mixture of a dilute nonvolatile solute in a volatile solvent, an asymptotic

expression is derived for isothermal dew-bubble curves in the region just above the solvent critical

point.  The expression depends only on the solvent coexistence properties and the initial slopes of

the continuous critical locus, with no adjustable parameters.  It clarifies the mathematical behavior

of these curves and shows why,  for this situation, classical critical exponents can be used with

relatively small error.  For supercritical extraction applications, the expression does not apply to

solutes with large, complex molecules, since the critical locus with carbon dioxide is usually

discontinuous, but it should apply to carbon dioxide + cosolvent mixtures.  The formula is in good

quantitative agreement with experiment for three simple nonpolar mixtures and for carbon dioxide

+ acetone, but shows only qualitative agreement for carbon dioxide + ethanol.
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binary mixture; bird’s beak isotherm; cosolvents; critical state; supercritical region; vapor-liquid
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I. INTRODUCTION

Thermodynamic behavior and phase equilibria of fluids and fluid mixtures in the

near-critical region are characterized by critical exponents, which differ in value from classical

exponents that result from standard equations of state [1].  For purposes of accurate thermodynamic

correlations, usually the most important critical exponent is �.  If T is the temperature of coexisting

liquid and vapor states of a pure fluid with densities �
5
 and �v respectively, then:                          

       

where the subscript c denotes critical value and C1 is a constant.  Classically � = 0.5, but according

to the modern theory of critical phenomena, � = 0.325 within the region very near the critical point.

For some purposes [2], an "effective" value of � = 0.355 makes Eq. (1) a useful (but approximate)

fitting function over a wider range, typically -0.1 < t < 0.

At present, even in the critical region, vapor-liquid equilibria of mixtures are most frequently

modeled by classical equations of state, including commonly used cubic equations such as the

Redlich-Kwong [3] and Peng-Robinson [4] equations.  Some nonclassical models with theoretical

or effective critical exponents are available, such as the Leung-Griffiths model [5] as modified by

Rainwater and  Moldover [2, 6] and related models that incorporate crossover functions to connect

the critical and noncritical regions [7-11]. Such models are currently used in a correlative rather than

a predictive mode, since in general they require the critical locus as input as well as a number of

adjustable parameters that can be determined only when extensive experimental data are available.

Also to date, they have been used only in a limited degree for multicomponent mixtures [12-14],

caloric properties [9,15], and mixtures with discontinuous critical loci [16], subjects which are

generally easily studied by means of classical equations of state.  A question that then arises is how

much error is caused by the use of an equation that leads to (incorrect) classical critical exponents.

The answer, of course, depends on the thermophysical property that is being studied.  One general

observation is that proper exponents appear to be more important for densities than for the

pressure-temperature-composition phase boundary.

For the P-T-x-y phase boundary surface without regard to densities, the problems with
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classical equations of state are less evident.  Commonly used phase equilibrium algorithms can fail

to converge in the critical region, but this is a deficiency of the algorithm rather than the equation

of state itself.  For isotherms just above the critical temperature of the more volatile component, as

seen in the numerous Peng-Robinson correlations of Knapp et. al. [17], and elsewhere, the classical

equation of state frequently appears to agree well with experimental data all the way to the critical

point.  One conclusion of the present work is that it is this type of diagram, and this region of that

diagram, in which the errors introduced by classical critical exponents are not of great importance,

in contrast to other diagrams and regions of the P-T-x-y diagram.

Our primary result is a simple asymptotic formula for isothermal dew-bubble curves at

temperatures just above the critical temperature of the volatile component, and which thus describe

a dilute nonvolatile solute in a volatile solvent.  We depart from traditional practice only in that the

mixture critical locus is considered input rather than output.  However, from the coexistence

properties of the solvent and the initial slopes of the mixture critical locus, the isothermal

dew-bubble curves are predicted without any further adjustable parameters.  The present result thus

does not suffer from the need to correlate many parameters that has been experienced with the

modified Leung-Griffiths model.

II.  ASYMPTOTIC FORMULA FOR DEW-BUBBLE CURVES

Our starting point is the modified Leung-Griffiths model [2,6] which has yielded successful

critical-region vapor-liquid equilibrium correlations for a wide variety of mixtures.  On the

coexistence surface, the independent variables of the model are � and t, where:

and t is defined by Eq. (1) with a �-dependent Tc of the mixture [2].  Here µi is the chemical

potential of fluid i, where i=1 for the nonvolatile solute and i=2 for the volatile solvent.  Also, R is

the gas constant and K is a temperature-dependent parameter that allows us, for monotonic Tc(x),

to impose the condition � = x1 on the critical locus [18].

We consider the small region of the phase diagram that describes a near-critical dilute

nonvolatile solute in a volatile solvent.   Over a limited regime, the vapor pressure curve of the
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solvent  (solid line  of  Fig. 1) is approximately linear, with constant slope (dP/dT)
)
, and terminates

at the solvent critical point C.  The mixture critical locus CAD is assumed to be linear over this

regime in P vs. x1 and T vs. x1 (and therefore in P vs. T ), so dPc /dx1 and dTc /dx1 are constants.

Our objective is to describe the isotherm AB, where A is a critical point of the mixture.  Here BD

is a locus of constant �, also linear over a limited regime,  and according to the modified

Leung-Griffiths model [2, 6], it is parallel to the vapor pressure curve, so (dP / dT)
�
 = (dP/dT)

)
.

The validity of these assumptions depends on the mixture in question.  The solvent vapor

pressure curve may be expanded in powers of t:

so that beyond the linear term there are contributions of order (-t)1.9 and t2 with coefficients that can

be fairly large.  However,  those two terms are nearly equal and opposite and largely cancel each

other for small t.  Therefore, vapor pressure curves of most pure fluids are very close to linear over

the range 0.8 Pc < P < Pc.

Critical loci can assume many different shapes, and for some mixtures such as sulfur

hexafluoride + propane [19] or benzene + methanol or 1-propanol [20], there is an abrupt hook at

the critical point of the volatile fluid, so the present analysis does not apply.  The initial part of the

critical locus is more likely to be linear if the fluids are somewhat dissimilar.  For example, critical

loci for carbon dioxide + propane or n-butane have curvature and extrema along their initial

intervals [21], but mixtures of carbon dioxide with alkanes from n-pentane to n-decane show

sizeable linear intervals, although the critical locus becomes discontinuous at tridecane [22]. 

Elsewhere we have shown [23] that, along a line of constant �,

where the plus refers to liquid and minus to vapor, C1 is defined by Eq. (1), and
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where �2 is a measure of dew-bubble curve width.  We have also shown that, in the dilute regime,

where A is the Krichevskii parameter [24] that has been shown to govern much of dilute

critical-region thermodynamics [25].  A has dimensions of pressure, and in the case of Fig. 1, is

negative.

We choose T as the temperature of the isotherm AB with critical composition xc(T) at point

A, and �x1c as the difference in x1c between points A and D, and treat both quantities as small.  If

PJ and TJ are the pressure and temperature at point J ( A,B or D), then:
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We then use Eq. (4) along line DB with the assumption that C1 (�) is approximately C1 for

the pure  solvent,  and  �  =  x1c  (T) + �x1.  Therefore, at point B, an arbitrary point on the isotherm

of interest, and where � P and A are both negative,

Equation (10) is our central result and is first used in Fig. 2.  Several important observations can

now be made: 

1)  At the "bird's beak" isotherm T = Tc2, the critical temperature of the solvent, x1c (T) = 0.

Thus on a P-x plot such as Fig. 2, both the dew and bubble curves have initial slope A, a result

shown earlier by Levelt Sengers [26].  The difference �x1 = x15
 - x1v is proportional to (-��)�+1 as

noted by Harvey and Levelt Sengers [27].  Higher order terms would appear in Eq. (10), in addition

to the terms explicitly omitted in our derivation, from a crossover theory.  However, a simple

scaling theory with an effective � = 0.355 has been shown to describe experiment over a fairly large

range, so in considering the differences between a classical and a scaling law model, we will use the

classical and effective exponents.  Whether � = 0.5 or � = 0.355, the bubble curve on the bird's beak

isotherm is initially convex upward and the dew curve concave upward, and the isotherm has an

infinitely sharp point at the solvent critical point.  For T<Tc2, the initial slopes of the bubble and dew

curves differ according to a similar formula related to Henry's Law due to Japas and

Levelt Sengers [28]:

where B and D denote bubble and dew curves and �
52 is the solvent saturated liquid density, at

temperature T.

2)  Since there are terms in Eq. (10) proportional to (-�P)� and (-�P)�+1, an earlier

conclusion of Harvey and Levelt Sengers [27] is affirmed and made more precise.  For fixed

positive x1c (T), at very small values of |��| the term with the � exponent dominates.  However, the

coefficient of this term is proportional to x1c (T), which in this regime is itself small, so there is a

competition between the two terms.  Also, rectilinear diameters of the dew-bubble curves are
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straight lines of slope A.

3)  Since nonclassical thermodynamic models are not yet as well developed for general

purposes as classical equations of state, such classical equations are still commonly used even in the

critical region.  It is thus important to understand how significant the numerical errors will be from

use of improper critical exponents.  Such a question of course depends on the situation of interest,

but Eq. (10) shows that, in the case of critical phase equilibrium of a dilute solution with nonvolatile

solute, one can largely get away with the use of classical exponent values.  There is not much

difference between behavior governed initially by an exponent of 0.5 with transition to an exponent

of 1.5, as compared with behavior governed initially by an exponent of 0.355 with transition to an

exponent of 1.355.

The DECHEMA volume on vapor-liquid equilibrium [17] shows many examples of

Peng-Robinson [4] correlations that are fairly good in the corner of the diagram that represents a

dilute nonvolatile solute.  The situation is quite different on the other side of the phase diagram for

a dilute volatile fluid in a nonvolatile solvent and "pure-� behavior".  There, the DECHEMA fits

show many examples of convergence failures and deviation with experiment near critical conditions.

4)  One of the problems with the modified Leung-Griffiths model is the proliferation of

adjustable parameters.  Equation (10), however, is a compact representation that depends only on

solvent coexistence properties and the slopes of the critical line, without any free parameters.

5)  Finally, we wish to comment on what we believe is a misunderstanding in the literature.

  For any temperature such that Tc2 < T < Tc1, and consequently for a finite nonzero x1c (T), there

is a term proportional to (-��)� in Eq. (10), and thus at the critical point of the dew-bubble

isotherm,

However, Eq. (12) does not hold exactly at T = Tc2.   For this bird's beak isotherm, the first

term in brackets of Eq. (10) is zero, and the dew-bubble curve comes to an infinitely sharp point of

slope A at the critical point of the solvent.  Wichterle et al. [29], we believe incorrectly,  asserted

that Eq. (12) holds for the bird's beak isotherm also.  Probably influenced by this analysis, Stryjek



et al. [30] of the same laboratory plotted the bird's beak isotherm for the nitrogen + methane

mixture, in a closeup inset to their Fig. 6, as having a sharp hook so that the curves are horizontal

at the critical point.  There is insufficient data to support this conclusion, and in agreement with

Levelt Sengers [26], we believe that conclusion to be incorrect.  In other words, the bird's beak

isotherm is like the beak of an egret, not like the beak of an ibis. 

III.  SIMPLE NONPOLAR MIXTURES

To test our result, we first examine some simple mixtures of nonpolar fluids.  We seek

mixtures with a number of isothermal dew-bubble curves at temperatures just above the critical

temperature of the volatile component, and with a critical locus with a nearly linear initial segment.

Kobayashi and co-workers have presented such experimental studies for methane + ethane [31],

nitrogen + methane [30], and methane + propane [32].  These mixtures have also been correlated

with the modified Leung-Griffiths model, so a comparison between that model, Eq. (10), and

experiment can be made.

Figure 2 shows the comparison for methane + ethane.  For each isotherm the solid line is

Eq. (10), and the dotted line is the modified Leung-Griffiths model [2].  Except for minor parameter

adjustments, this is equivalent to the fit of methane + ethane by Smith and Lynch [14].  The model

was optimized to the constant-composition VLE data of Bloomer et al.[33].

Equation (10) and the full model are in agreement in the near-critical region, but diverge

somewhat away from the critical locus.  Both agree well with experimental data where they

coincide, and Eq. (10) could be made to agree better with experiment by small shifts in the critical

locus.  That locus was optimized to the entire phase diagram, so a refitting of the initial linear

segment of the critical locus could lead to improved agreement in Fig. 2, although there may also

be small systematic discrepancies in the experimentally stated temperatures [26].

The derivation of Eq. (10) is a leading-order analysis of an expansion in t and x, and neglects

many effects.  Among these are the curvature of the solvent vapor pressure curve and loci of

constant �, the curvature of the critical locus, the variation of critical density with composition, and

other factors which are not understood fundamentally but are accounted for by adjustable

parameters.  Also, at points in the derivation higher powers of x1 are neglected.  However, for the

supercritical region, here defined as the region above the critical pressure and temperature of

nitrogen, and for temperatures at least up to the temperature at which x1 = 0.05 on the critical locus



as well as at slightly lower pressures, Eq. (10) appears to be accurate.

The comparison for nitrogen + methane is shown in Figure 3.  Except for the problem with

the bird's beak isotherm noted earlier, the data of Stryjek, et al. [30] appear to be reliable.  The

Leung-Griffiths correlation of this mixture was presented earlier by Rainwater and Moldover [34]

as an optimization to the data of Bloomer and Parent [35].  The overall pattern is similar to that of

methane + ethane.  Similar agreement is found on comparing to dilute solutions of propane in

methane [32].

IV:  CARBON DIOXIDE  +  COSOLVENT MIXTURES

In this section, we consider possible applications of Eq. 10 to problems in supercritical

extraction.  We first note that our equation is probably not applicable to the complex products

usually extracted with pure supercritical carbon dioxide.  The reason is that, as a separation process,

supercritical extraction is advantageous only for solutes of very large molecules, and thus of

substances that have a very high critical temperature (and probably decompose at that temperature).

In general, mixtures of such substances with carbon dioxide do not have continuous critical loci.

Our result may have some validity for discontinuous critical loci, but only over a very limited range.

We know approximately the conditions such that mixtures of a solute with carbon dioxide

do not display discontinuous critical loci, from various studies of Lam and co-workers [21, 36].  For

example, for the carbon dioxide + n-alkane family [21] that locus becomes discontinuous at

tridecane (Tc = 676 K) and for the carbon dioxide + n-alkanol family [36], the discontinuity occurs

at n-hexanol (Tc = 611 K).  Critical temperature ratio is the most important (but not the only)

determiner of whether a binary mixture critical locus is continuous, so we can presume carbon

dioxide usually does not form mixtures of continuous critical loci with substances such that

Tc > 600 K, and of molecules larger than those we have cited.

However, our expression was at first expected to be applicable to the thermodynamics of

carbon dioxide + cosolvent mixtures used in supercritical extraction.  Often a polar cosolvent, also

called a modifier or entrainer, is used to enhance the solvation power or selectivity of the solvent.

Typical choices of cosolvent are acetone, acetonitrile, and n-alkanols, and carbon dioxide mixtures

with these substances (for n-alkanols up to n-hexanol [36]) are known or expected to possess

continuous critical loci.  There has been considerable recent interest in measuring VLE of carbon

dioxide with these cosolvents in the region supercritical to carbon dioxide; in some cases the



experimental results are presented as unsmoothed three-dimensional surfaces [37, 38].  It would be

useful to have an explicit mathematical expression for such surfaces, so it is useful to test Eq. (10)

for such a purpose.  We note that in previous studies of the Leung-Griffiths model [39], the presence

of polarity leads to more parameters or larger values of parameters than otherwise but does not

diminish the accuracy of the approach in correlation mode.  We test the model here with the

cosolvents acetone (Tc = 508 K) and ethanol (Tc = 514 K).

Figure 4 shows the comparison with our theoretical results and the isotherm at 313.15 K of

Katayama et al. [40].  In contrast to the mixtures of the previous section, for this mixture there are

no coexisting density data and no VLE data for acetone-rich mixtures so the Leung-Griffiths

correlation is more speculative.  Nevertheless, as optimized by simplex methods [41, 42], it agrees

with the limited data quite well.

As shown, Eq. (10) for this isotherm follows the Leung-Griffiths model down about to the

carbon dioxide critical pressure before diverging.  We can improve the agreement with experiment

significantly by adding a term B � P2  to Eq. 10, which gives curvature to the diameter, as shown

in Fig. 4 with the choice  B = 0.009 MPa-2.  This term also prevents, in this case, the unphysical

result, possible from the original Eq. 10, that x < 0.  Unfortunately, the phase boundary surface is

no longer determined from the solvent properties and critical locus, in that adjustable parameter B,

in general temperature-dependent, must be added.  In this case, it is an inescapable conclusion from

the data that the diameter is not linear.  Nevertheless, Eq. (10) describes most of the properties of

the isotherm.

Equation (10) provides a much poorer description of carbon dioxide + ethanol, as shown in

Fig. 5.   We have been unable to construct a successful Leung-Griffiths model for this mixture.

Fig. 5 shows the experimental isotherms of Lim et al. [43] at 308.15 K and the predictions of

Eq. (10).

One difficulty, as noted previously for carbon dioxide + methanol [10], is an inconsistency

between VLE experiments and direct measurements of the critical locus.  Figure 5 shows critical

loci as optimized to that of Gurdial et al.[44] and as inferred from the data of Lim et al. [43].  These

separate loci are in good agreement in P-x space, but not in P-T space.  The isotherm determined

from Eq. 10 and the former critical locus has a critical point inconsistent with the VLE data and is

extremely narrow compared with experiment.  Here the slopes dP/dT of the solvent vapor pressure



curve and the critical locus are quite close, so there is a large sensitivity of Eq. 10 to variations in

the critical locus.

The isotherm determined from Eq. 10 and the latter critical locus is much wider than the first

theoretical curve, but still much narrower than the experimental curve.  Previous studies [16,23]

have shown that the "amplitude" of the phase boundary curves are closely related to the properties

of the solvent vapor pressure curve and critical locus while the diameters may not be, but in this case

the theory breaks down for the amplitudes as well.  There is some clear scatter in the data on the

vapor side, and the smoothed data might be described with the mathematical form of Eq. 10 with

a quadratic term, but with coefficients that would be adjustable parameters.  We can only speculate

on the apparent failure of our approach for this mixture.  While carbon dioxide + ethanol is

generally regarded to be Type 1 in the nomenclature of Van Konynenburg and Scott [46] (Class 1P

in the recently proposed nomenclature of Bolz et al.[47], it may be near P a transition to Type 5 of

Van Konynenburg and Scott ( Class 2P of Bolz et al.).  In this transition, the critical locus changes

from continuous to a locus broken by a three-phase, liquid-liquid-vapor locus.  Proximity to such

a transition may introduce a different type of fluctuation, the predominantly composition flucuations

of liquid-liquid equilibrium in addition to the predominantly density fluctuations of vapor-liquid

equilibrium, and the assumptions of the theory may break down.  To resolve this issue, further

investigation is needed, perhaps in conjunction with classical equations of state which work

somewhat better in this regime for the present mixture.

.
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FIGURE CAPTIONS

Figure 1.  Schematic pressure-temperature diagram of a near-critical dilute solution, linearized.

Solid line, vapor pressure locus of solvent; dotted line; critical locus; broken line, isotherm; dashed

line, locus of constant zeta.

Figure 2.  Pressure-composition diagram for dilute ethane in methane.  Experimental data and

temperatures as indicated.  Critical locus, broken line; solid lines, asymptotic formula; dotted lines;

Leung-Griffiths model; dashed lines, diameters of isotherms.

Figure 3.  Pressure-composition diagram for dilute methane in nitrogen.  Experimental data and

temperatures as indicated. Linetypes same as Fig. 2.

Figure 4.  Pressure-composition diagram for dilute acetone in carbon dioxide.  Experimental data,

inverted triangles (Ref. 40, 313.15 K).  Linetypes same as Fig 2. except solid line, original

asymptotic formula and diameter; dashed line, modified asymptotic formula and diameter with

quadratic term in diameter.

Figure 5.  Pressure-composition diagram for dilute ethanol in carbon dioxide.  Experimental critical

points, empty circles Ref. 44, empty triangles Ref. 45.  Filled circles, VLE data at 308.15 K.

Broken line, critical locus optimized to measured critical points, with critical point C1 at 308.15 K.

Dotted line, critical locus optimized to VLE, with critical point C2 at 308.15 K.  Solid lines,

respective asymptotic formula results;  dashed lines, respective diameters.












